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1 General introduction

This document contains a hierarchical model to estimate population counts using a combination of aggregated
mobile phone data and official data both at a given time instant and along a sequence of time periods. This
work completes the preceding proposal which sets the model for the initial time instant estimates (cf. ESSnet
on Big Data WP5 (2017)). Thus, in the subsequent we show how to extend the estimates along a sequence of
time instants, not just the initial one.

Again we focus only on the methodological aspects of the proposal. Software programming aspects will
be dealt with in another document. We provide a full view of the proposal to offer a complete view of
this methodological approach. We directly concentrate on the model leaving the general framework and
motivation for the corresponding deliverables.

Now the approach can be graphically represented by figure 1:

Figure 1: Schematic diagram for the output intended using mobile phone and official population data.

From the preceding stage of the whole production process with mobile phone data we get as input data for
the final inference stage the number of individuals NMNO

ij (t0, tn) moving from territorial cell i to territorial
cell j in the time interval (t0, tn) according to the mobile telecommunication network. These data will be
combined with official data coming from, say, the population register or another source. At the end we intend
to provide as outputs (i) the probability distribution of actual individuals in each territorial cell i at the initial
time t0 and (ii) the probability distribution of actual individuals at the time instants tn for n = 1, 2, . . ..

The two basic working assumptions are as follows:
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1. To combine both aggregated mobile phone and official data we assume that a given time instant t0 both
population figures in each territorial cell can be equated to some extent. For the time being for ease of
simplicity, we will take NReg

i as a fixed quantity without a prior distribution representing uncertainty
in its knowledge. Therefore NReg

i will be fixed external parameters in the model.

2. The movements of individuals across the territory (from cell to cell) is assumed to be independent of
being subscribers of a given Mobile Network Operator or another.

We propose a hierchical model supporting these hypotheses. The approach is not to think of the model as a
definitive closed proposal, but as an initial step for a general methodological framework for the inference stage
in which we can progressively introduce more complexities as the analysis on real data allows us to extract
conclusions (e.g. introducing geospatial correlations among the territorial cells, dealing with the selection bias
in relation with some demographic profiles – elderly people, children, . . . ).

2 The complete model

Let pij(t0, tn) denote the probability for an individual to move from cell i to cell j in the time interval (t0, tn).
Let NMNO

ij (t0, tn) the number of individuals moving from cell i to cell j according to the network. As usual,
we denote NMNO

i· (t0) =
∑I
j=1 N

MNO
ij (t0, tn). The complete model which we propose is specified by:

Ni(tn) =

Ni(t0) +
I∑
j=1
j 6=i

pji(t0, tn)Nj(t0)−
I∑
j=1
j 6=i

pij(t0, tn)Ni(t0)

 , i = 1, . . . , I (1a)

pi·(t0, tn) ' Dir (αi1(t0, tn), . . . , αiI(t0, tn)) , pi·(t0, tn) ⊥ pj·(t0, tn), i 6= j = 1, . . . , I (1b)

αij(t0, tn) ' fαij

(
αij ;

NMNO
ij (t0, tn)
NMNO
i· (t0)

)
, i = 1, . . . , I (1c)

NMNO
i (t0) ' Bin (Ni(t0), pi(t0)) , NMNO

i (t0) ⊥ NMNO
j (t0), i 6= j = 1, . . . , I (1d)

Ni(t0) ' Po (λi(t0)) , Ni(t0) ⊥ Nj(t0), i 6= j = 1, . . . , I (1e)
pi(t0) ' Beta (αi(t0), βi(t0)) , pi(t0) ⊥ pj(t0) i 6= j = 1, . . . , I (1f)

(αi(t0), βi(t0)) '
fui

(
αi

αi+βi
; N

MNO
i (t0)

NREG
i

(t0)

)
· fvi

(
αi + βi;NREG

i (t0)
)

αi + βi
, (αi(t0), βi(t0)) ⊥ (αj(t0), βj(t0)), i 6= j = 1, . . . , I

(1g)
λi(t0) ' fλi(λi;NREG

i (t0)) (λi(t0) > 0, λi(t0) ⊥ λj(t0)), i = 1, . . . , I, (1h)

where

• [·] denotes the nearest integer function;

• fαij stands for the probability density function of the parameters αij . The notation fαij
(
αij ;

NMNO
ij (t0,tn)
NMNO

i· (t0)

)
is meant to indicate that NMNO

ij (t0,tn)
NMNO

i· (t0) should be taken as the mode of the density function;

• fui stands for the probability density function of the parameter u (see the preceding document on the
model) in cell i with mode NMNO

i (t0)
NREG

i
(t0) ;

• fvi stands for the probability density function of the parameter v (see the preceding document on the
model) in cell i with mode NREG

i (t0);
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• fλi stands for the probability density function of the parameter λ (see the preceding document on the
model) in cell i with mode NREG

i (t0).

Equations (1d) to (1h) are taken from the model in the preceding document just adding explicitly the time
dependence. Therefore, their interpretation remains the same. Equations (1a), (1b), (1c) take care of the
time evolution of the estimates. Their interpretation is straightforward.

Equation (1a) states that the number of individuals in a cell i at time tn equals the initial number of
individuals plus those arriving from other cells in the given time interval minus those leaving for other cells
in the same time interval. The number of individuals arriving and leaving are estimated using the transition
probability among cells.

Next, to estimate these transition probabilities we model them for a given cell i as a multivariate random
variable with a Dirichlet distribution with parameters αi1, . . . , αiI . These parameters, in turn, are given
unimodal prior distributions fαij

with mode in NMNO
ij

NMNO
i·

according to our second working assumption.

3 Computations

Ultimately we need to compute the probability functions P
(
Ni(tn)

∣∣NMNO(t0, t1)
)
for each cell i, which will

allow us to choose an estimator as, e.g., the posterior mean, posterior median or posterior mode.

The computation is conducted empirically in three steps:

1. The initial population value Ni(t0) is generated for all cells i = 1, . . . , I according to the model using
NMNO
i· (t0) as input data and choosing weakly informative priors fui, fvi and fλi.

2. A transition probability matrix [pij(t0, tn)] is generated according to the model using NMNO(t0, tn) as
input data and choosing weakly informative priors fαij .

3. These generated quantities are used in formula (1a) to generate Ni(t1) for all cells i = 1, . . . , I.

Following these steps we can generate an empirical posterior distribution of values Ni(tn) for each cell i.
Then we can use these distributions to provide a point estimate according to its mean, median, or mode.

4 A toy example

Again let us simulate a toy population to illustrate this approach. We generate a population with a territory
divided into 12 cells. At 4 succesive time intervals the individuals follow their own trajectories so that the
population in each cell evolves according to actual transition matrices Nij(tn−1, tn), n = 1, 2, 3, 4. At the
initial time instant t0 we also have the population register figures for each cell NReg

i (t0) which can be equated
to the initial real population Ni(t0), although they are not completely equal due to nonsampling errors. Data
used in this illustration can be found in URL.

We also generate the transition matrices for each time interval n = 1, 2, 3, 4 for the individuals NMNO
ij (tn−1, tn)

detected with the network.

We proceed as sketched above. Firstly, we generate the estimates Ni(t0) for the initial time instant, as
conducted in the preceding document.
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Now we can provide two kind of time evolutions for the population in each cell. On the one hand, we can
generate simulated populations conditioned upon their estimated initial size N̂i(t0). On the other hand, we
can provide these simulated populations unconditioned upon their estimated initial size but starting from the
input data themselves (thus uncertainty in the initial population estimate is included).

In the first case, taking the mean of the preceding populations as estimates for the initial population of each
cell we obtain the following evolving simulated populations in each cell (in dashed lines the assumed true
values of the simulated population):
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By comparing both figures we can detect how the uncertainty in the estimation of the initial population size
propagates along the evolving estimates of the population size of each cell. In particular, in cells 6 and 7 we
can observe how the uncertainty in the simulated initial populations provide rather inaccurate estimates for
later time periods.

Using again the posterior mean as estimator of the population in each cell, we have the following evolutions:
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In terms of the relative bias, this comparison can be depicted as follows:
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Complementarily, we can produce estimates unconditioned on the initial estimate of the population in each
cell. Now the uncertainty in the estimation of the initial population of each cell is incorporated into the
estimation process for later time periods.
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In terms of the relative bias, this comparison can be depicted as follows:
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5 First conclusions

Apparently, the model seems to work on these toy data. However there are many details to be tackled on
before claiming such a conclusion:

1. The model must be checked against larger and more complex data (more cells and more time intervals).
The process of data generation must be explicitly spelled out to assess about how realistic they are.
This will be undertaken in the deliverable.

2. It is expected that the higher the complexity of the data is, the more computationally demanding the
model will be. We will have to check the computational capabilities of the programmed functions.

3. No mention to accuracy (apart from the relative bias) and its estimation has been included. This will
be an essential part of the quality assessment and will be undertaken in the last deliverable.

4. As the data complexity increases, we will certainly need a visualization tool to include population
estimates of all cells for all time periods (possibly maps, grids, heat maps, etc.).

5. The model ultimately must be tested against real data compiled in the SGA-1 by WP members. In
this case we do not have the ground truth figures to compare with and we must rely on the preceding
performance and expert knowledge.

6. Notice that the model itself (not the data) can gain in complexity by adding new methodological
elements:

• The register population NReg
i is not modelled at all. We can also assume a prior distribution for

these variables reflecting the uncertainty (due to nonsampling errores) in the register figures.
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• No spatial correlation is introduced in the model between the cells. These correlations can introduce
more realistically this feature.

• No time correlation is introduced in the model between time periods. Time series techniques (or
space-time modelling techniques) can in principle improve the model.

• No bias selection analysis has been conducted. Techniques as Heckman bias correction technique
can be also another element to take into consideration.

Thus, this proposal is indeed a first simple model which can be further potentially adapted to more realistic
situations as the analysis with real data will suggest.
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